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This paper describes a numerical method for the solution of a system of plasma
fluid equations. The fluid model is similar to those employed in the simulation of
high-density, low-pressure plasmas used in semiconductor processing. The governing
equations consist of a drift-diffusion model of the electrons, together with an inter-
nal energy equation, coupled via Poisson’s equation to a system of Euler equations
for each ion species augmented with electrostatic force, collisional, and source/sink
terms. The time integration of the full system is performed using an operator splitting
that conserves space charge and avoids dielectric relaxation timestep restrictions. The
integration of the individual ion species and electrons within the time-split advance-
ment is achieved using a second-order Godunov discretization of the hyperbolic
terms, modified to account for the significant role of the electric field in the prop-
agation of acoustic waves, combined with a backward Euler discretization of the
parabolic terms. Discrete boundary conditions are employed to accommodate the
plasma sheath boundary layer on underresolved grids. The algorithm is described
for the case of a single Cartesian grid as the first step toward an implementation on
a locally refined grid hierarchy in which the method presented here may be applied
on each refinement level. g 1999 Academic Press
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1. INTRODUCTION

Many plasma phenomena can be predicted using mathematical models in whick
plasma is treated as a fluid comprised of charged species. One example is provide
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models of industrial plasmas used in the manufacture of very large scale integrated (V
circuits. Inductively coupled plasma (ICP) reactors are one type of tool designed to sa
the demanding process requirements resulting from the desire to create increasingly sr
device features on increasingly larger wafers. In spite of the low pressures employed ir
reactors, the numerical solution of systems of equations arising from fluid models of tt
plasmas can be very effective in predicting some important aspects of their behavior,
as the uniformity of the plasma across the wafer [13].

One of the challenges in the computational modeling of high-density, low-pressure |
cess plasmasisthe presence of boundary layers, sakadhsAs in other types of boundary
layer problems, there are two main ways to account for sheaths. One approach is to e
itly include a boundary layer expansion obtained from one-dimensional scaling anal;
normal to the boundary. These expansions are coupled to simulations of the bulk plasn
enforcing compatibility conditions, such as continuity of fluxes and fields, at the bound
separating the two models. The combination of sheath and bulk models is the star
approach currently used in industrial plasma simulators.

A second generic method for handling boundary layers is the use of local grid refinen
In this approach, fine grids are deployed in regions of high estimated error and/or solt
variation (e.g., the sheath) while coarser grids are used in the more quiescentregions (e.
bulk plasma). The flexibility and gains in resolution provided by local mesh refinement
further enhanced when combined with high-order discretization methods yielding sm:
discretization errors per grid cell than conventional first-order methods, thereby redu
the amount of grid refinement needed to achieve a given level of accuracy. High-resolt
methods combining high-order discretization and local grid refinement have been extre
successful in solving systems of equations arising from computational models of nel
fluids, including those admitting viscous boundary layers.

The purpose of this paper is to begin the development and analysis of high-resolt
methods for the solution of a plasma fluid system representative of those describin
high-density, low-pressure process plasmas mentioned above. In this first step, we cor
a model in which the plasma is regarded as a multicomponent fluid comprised of ions
electrons, coupled by Poisson’s equation. The motion of the electrons is described
drift-diffusion model, together with an internal energy equation, while each ion specie
modeled using the classical Euler equations of gas dynamics augmented with electro
force, collisional, and source/sink terms. We describe and analyze a discretization me
in which the plasma components are integrated in a time-split manner that conserves !
charge and avoiddielectric relaxationtimestep restrictions. For the integration of the
individual ion species and electrons, a second-order Godunov discretization is applie
the hyperbolic terms, with appropriate modifications made to account for the significant
of the electric field in the propagation of acoustic waves. The parabolic terms are integr
using backward Euler, although higher-order backward difference formulas could als
used. Discrete boundary conditions are imposed in a manner consistent with the 1
known Bohm criterion for the minimum ion velocity at the sheath boundary, together wit
boundary condition on the electron flux designed to yield a self-consistent value, regart
of whether or not the sheath is resolved.

In this discussion, we restrict our attention to the case of a single Cartesian grid, o
a straightforward extension, an arbitrary union of Cartesian grids. As suggested at
however, our ultimate goal is to incorporate a local mesh refinement strategy. One appit
tointegrating a fluid system on block-structured locally refined grids is to regard the struc
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as a hierarchy of refinement levels, each of which is an arbitrary union of Cartesian ¢
appropriately nested in the next coarser level. Time integration can then be performe
a level-by-level basis, combined with synchronizations to enforce interlevel compatibi
conditions. A fundamental requirement in such an approach is an effective algorithr
integrate the fluid system on a single refinement level, which is the topic of this pa|
The algorithmic issues arising even in this restricted context are sufficient to warrant t
specific consideration here, deferring the description of the algorithm on locally refir
grids to a subsequent article [4].

In Section 2, we present the physical model and the resulting system of equatior
be solved. Section 3 begins with a discussion of some essential model characteristic
mathematical issues affecting the choice of discretization method. Each step of the t
split integration method is then described in detail. Some numerical results illustrating
computational complexity and convergence of the method are then presented in Sect

2. PLASMA FLUID MODEL

The governing equations for a plasma fluid model are based on Maxwell’s equati
together with moments of the Boltzmann equations describing the transport of the
and electron components. Each plasma component is assumed to have a drifting,
Maxwellian velocity distribution. The infinite set of moment equations is truncated, a
the moments corresponding to the conservation of mass, momentum, and energy for
component are retained. A detailed development can be found in [8]. In our model,
ion species is modeled by the system

an;
a—tl-i-V'(niui):JZR‘j’ @D
W.FV.(miniUiUi)"‘v(nikTi)
=qmiE—Z#nivij(Ui—uj)+ Z miui Ry + Z iR, (22)
— mi +m jIR; IRy
J jIRj<0 1IR; >0
o[ (m m
ﬁ[ni (?ui - Uj +Ei)] +V- [ni <?Iui - Uj +5i>Ui] + V- (nikTiu) = qginiui - E

2mimj 1
— sznivij E(miui - Ui —Mjuj - U +(mj — m)uy; -Uj)+5i —5]'

+ Z <%Ui - U +5i> Rj + Z (%Uj - Uj +51) Rij +ZGiij, (2.3)
JIRj <0 JIRj>0 i
& = ﬂ (2.4)
i —1

whose variables are defined in Table I. The summation notation in the right-hand side
(2.2) and (2.3) denotes summation over all particle species (electron, ion, and neutral)
equations (2.1)—(2.4) are the classical Euler equations for a polytropic ideal gas augm:
by electrostatic force, collisional, and gain/loss terms.

The electron equations are obtained from a moment system analogous to (2.1)—(2.4)
a number of additional assumptions. First, we assume the drift-diffusion approximatior
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TABLE |
Variables Used in the Plasma Fluid Model

Number density

Velocity

potential

Electric field

Temperature

Internal energy

Ratio of specific heats

Input power density

Transport coefficients

Mass

Number density gain/loss rates from ionization, attachment, etc.
Number density gain/loss rates from inelastic collisions
Energy transferred in inelastic collisions

Elastic collision frequencies

Charge

Elementary charge

Permittivity of free space

Boltzmann’s constant

the electron directed velocity. This approximation is sometimes referred to as the zero |
approximation, but actually it is just the elimination of inertial terms that are negligib
provided that the electron plasma oscillations are not resolved. The resultis the replace
ofthe electron momentum equation with an equation of state for the electron flux determ
from a balance of forces. The system of electron equations we consider is, therefore,

3(3nekTe)
ot

5
= —€enUs-E+V- (:nekTerTe) + Pind — Z

where

on
a_te + V- (Nele) = ; Rej, (2.5)
NelUe = —uNeE — nV(NekTe), (2.6)

5
+ V. <ne§kTeue)

3Me

“KTevejNe + > €S, (2.7)

i ) i

Ven = Zvej, (2.8)
j

= e/meven, (2'9)
7 = 1/Meven (2.10)

and the remaining variables are defined in Table |. Equation (2.7) for the electron inte
energy density% nek Te, is obtained by combining (2.5) and (2.6) with the equation for tt
total electron energy. The remaining approximations made in (2.5)—(2.8) are based o
low electron mass and (assumed) high electron temperature, relative to those of the

particle species.
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The coupling of external power to the plasma is via the deposition sourcé?grin the
electron energy equation (2.7). We assume that this source term is krpiami rather than
include a full electromagnetic model. For ICP applications, the high thermal conductivity
the plasma, along with the skin depth-limited penetration of electromagnetic fields, me
the decoupling of the source and plasma a reasonable approximation, provided the r
of interest is more than a few skin depths away from the coils (typically a few centimete
With this simplification and the absence of external magnets, we may neglect mag
fields. The electromagnetic behavior is then simply described by Poisson’s equation

«@V-E=> Gn+0Me E=-V¢. (2.11)
i

Boundary conditions for the system (2.1)—(2.11) will be specified in Section 3.3 in
context of our numerical discretization.

3. NUMERICAL ALGORITHM

3.1. Motivation

Before describing our numerical algorithm, we consider the plasma characteristics
mathematical issues that affect the discretization.

The slow motion of the ions, relative to the electrons, allows some flexibility in the man
in which they are advanced. We do, however, want to retain high spatial accuracy. Rega
the right-hand sides as source terms, (2.1)—(2.4) are the inhomogeneous Euler equ:
of gas dynamics. The mathematical properties of such equations are well understood
neutral gas for which effective high-order numerical methods have been developed [3

As part of the plasma fluid system, the ion equations differ from those describing a net
gas in at least one important respect, however. Derivations of the dispersion relation
positive ion acoustic waves (e.g., [2]) reveal that the second term in the right-hand sic
(2.2), involving the fieldE, makes a significant contribution to the plasma sound speec
Te > T,. Specifically, it is seen that small-amplitude, low-frequency waves propagate v

speed/(kTe + 31 kTi)/m; rather than the neutral sound speggi kT /m;. This is even

more evident in the case of ambipolar flow [2] for which

— pikTi — pekTe Vi ~ _KTe v (3.12)
e(ui + pe) N e n

(assuming that the electron mobilitye =€/Meve, dominates the ion mobilityu; =
e/m;vin), which implies that the second term in the right-hand side of (2.2), containi
the field E, dominates the ion pressure gradient. This important fact must therefore
included in the hyperbolic discretization. We accomplish this by explicitly incorporati
the plasma sound speed in the left-hand side of the equations for the positive ion sp
with a corresponding modification of the source terms. In convective form, the positive
momentum equations then become

DU »kT +kTe
- AT T2 evn = 3.13
ot T m n =83§, (3.13)
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where
Du; au;
—_— = i+ VU .14
Bt at+(”' i, (3.14)
KTe qln. mn,vIJ
= —Vn; —u)+ uRi + uR:. (3.15
S= Z S(ui—up) j%;o.R., ]_%OJRJ (3.15)

For electropositive systems (i.e., all ion species are positive), we employ the rearrange
(3.13) for each ion species. For electronegative systems (i.e., plasmas with at leas
negative ion species) we retain the original form of (2.2) for each negative ion species
replace (3.13) for each positive ion species by

Du; n ¥ KT + BkTe
Dt m;

kTe j N i Vi
SE'Bm an Zmnvl —Uj)—i—ZUiRij—i-ZUjRij, (3.17)

i jIR; <0 jIR; =0

vn =S, (3.16)

n;

where, lettingN denote the set of indices corresponding to the negative ion species,

A Y o = ni (3.18)

p ;
1+ZieNai% Ne

The use of the factg to modify the Bohm criterion for sheath formation in the presenc
of negative ion species is described in Section 6.4 of [11]. We have employed a sin
argument here to reduce the electronegative plasma sound speed.

Theion energy equations (2.3) are modified in a manner consistent with the correspor
momentum equations. The complete system is given in Section 3.2.1 below.

The rearrangement (3.13) was performed to introduce explicitly the correct plasma s
speed (as indicated by a linear analysis) in the left-hand side of the fluid system, allo\
the right-hand side to be treated as a lagged source term in an explicit integration of th
nonlinear system. We now show that the momentum source (3.15) does in fact vary slc
relative to the plasma sound speed time scale. In this analysis, we consider a single, pc
ion species and assume that the electron temperagliseconstant. We also neglect the
contribution of the gain/loss terms to the momentum source. To begin, we use the ele!
drift-diffusion equation (2.6) to rewrite the source as

kT, e 1
§ = VN4 ot N E v — - (Mevennele + €NE +KTeVne)  (3.19)
| {
kT, e m,
= —°V(Ni — Ne) + — E(Nj — Ne) — vinNiUj — — venNeUe. (3.20)
m; m; m;

To facilitate the estimation of the relative sizes of these terms, we apply several scalings
ng denote the number density of the neutral background, ang ttnote the ion collision
cross section correspondingig, i.e.,

KT\ 72
Vin = Oj no(—l) . (321)
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Let
,_ e
= — 3.22
V= (3:22)
kTe\ /2
Up= | — , 3.23
0 (mi ) (3.23)
Ui u
u=—, u=—, 3.24
= W= (3:24)
i Ne
n = —, n, = —, 3.25
=he "= (3.25)
A= ! , (3.26)
Nooj
X
X' == 3.27
> 3:27)
Uo
t=t—. 3.28
. (3.28)

The application of (3.22)—(3.28) yields

/Du/ T A/ ! / / / / e m / !/ / o
n; Dt: + (1+ T')V n =V —ng)+Mg—n)V'e — ﬁvenneue—vmniui, (3.29)
e

whereV’ denotes the gradient with respect to the scaled spatial variahted thev,, are
the scaled collision frequencies. Using (3.21), we have in particular that

A : 1/2
Vin = vi”uT, = (Te> (3.30)
and, using a similar expression for the electron collision frequency [12],
! = Dan— = galp| — === . 3.31
Ven Venuo Oe 0( me) Uo p (me> ( )

Hence, we have

Du; Ti
n 1+ =)V
' Dt +< + Te) :
1/2 1/2
Me\™ vy — (1 "
o (mi> NgU, <Te) niui. (3.32)

Oe
= VI, ) + (0, )V — %

Although the neutral collision frequencies for the ions and electrons typically differ by
couple orders of magnitude, this is primarily due to the relative difference in their thert
speeds rather than their collision cross sectienando; (e.g., see Table II), which we
therefore regard as comparable in this analysis.

The scaling (3.22)—(3.28) has effectively normalized wave velocities in (3.32) since
scaled sound speedl + T; /Te is approximately unity, assumin > T;. To see that the
right-hand side does not contain small (relative to unity) time scales, we next show
the spatially differentiated (i.e., the first and second) terms in the right-hand side of (3
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TABLE Il
Sample Physical Data

Electrons
me 9.1x 103 kg
kT 3.2 x 107 joules
Oe 1.2x 1079 m?

lons (Argon)

m; 6.6 x 1072 kg
kT 8.0 x 10-% joules
o 8.0x 10 m?

Neutral background

No 10 m3

are in fact small and slowly varying, and that the third and fourth terms are bounded dam
terms.

Differentiation of Poisson’s equation (2.11) with respect to time and use of the ion
electron continuity equations yields

603

2 = — . . U
o 8tv ¢ = —V - (NeUe) + V - (NjU;). (3.33)

Inserting the drift-diffusion electron flux and applying the scalings (3.22)—(3.28), we obt

d n. 1 m
_V/Z r— _V/ . _ev/ o _V/n/ _ev/ . n(u( , 3.34
A (eve = v mvo. G
where
¢ = Me€g U% (3 35)
- e2n0 A2 .

is the squared reciprocal of the scaled plasma frequency computed with the neutral de
Takinge as an asymptotic parameter tending to Zere 9.8 x 10-13forthe datain Table I1),
we expandp’ in € as

¢'=) €qf (3.36)
i=0

and substitute into (3.34). Equating the coefficients of like poweks tie zeroth-order
terms yield that

1 m
=V (nNV'¢y—V'ny) = ﬁv’ (), (3.37)
|

en
and the first-order relation is
0

! / 1 ! ! Y
5oV 0=V (V). (3.38)
en
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Using the scaled Poisson equation, we therefore have that

/ / m /. / m
n, —n =em;v2¢ =O<e#> ase — 0 (3.39)

e

and, using (3.31) and (3.38),

0 / / m; 0 2 4/ 2rni
—Mg—n) =e——V Ofe"— as 0
at’( e M)  me ot Po+ O e Me €

m; m
—e——V' - (N,V'$)) + O(ezm'> ase — 0 (3.40)

eVen e

N\ 12
= O(e(ﬂ) ) ase — 0.
Me

This implies that the first and second terms in the right-hand side of (3.29) are smal
well as their rate of change.

From (3.37), we obtain that the divergence of the ion and electron fluxes are compa
to leading order ir. In one spatial dimension, it then follows by integration that the fluxe
themselves are comparable. Thisimplies that, like the fourth term, the third termin the ri
hand side of (3.29) is simply a nondifferentiated damping term. More generally, we n
only deduce the compatibility of fluxes integrated over the boundaries of spatial subregi
There is nothing to prevent, for example, a situation in which the ion flux has compon:
only in thex-direction and the electron flux has components solely inytioirection. In
any case, since

1/2 1/2

Me m; 1
— nu, = — —(N.V'¢, — V'n. (0] as 0 3.41
<mi> ele <me) Vén( eV o o) + O(e) € — ( )
=01 ase — 0, (3.42)

the electron flux term in the right-hand side of (3.29) is, at worst, a bounded, nondiffel
tiated source term.

The scaling analysis employed above has another important implication for numel
discretization. Consider the temporal discretization of (3.34) (dropping primes)

n+1 _ 4n

EV2<%> =-V. (EV(GQS“ + (1—a)¢n+l) _ iVne> + %V . (ni Ui),
ven Ven m;

(3.43)

where¢" and¢"** are the old and new time potentials, respectively, Ands the time
step. The parameteris a to-be-determined weight, and the remaining discretizations
not important. Rearranging terms, we obtain

V. [(l+ w) V¢”+1] =V. Kl — aAme)Vdf‘] + other terms (3.44)

€Ven €Ven

Since stability requires that

€Ven m; 12
alAt < =0 e(—) ase — 0, (3.45)

Ne Me
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a severe timestep restriction results unkess O (e./m; /me). In other words, the potential
in the electron drift flux term must be treated implicitly. The necessity for maintaining a ti
coupling of the electron drift flux and the evolution of Poisson’s equation to aleldctric
relaxationtimestep limitations has also been recognized in other numerical approac
[1,9,13].

3.2. Time-Split Integration Algorithm

We employ a conservative spatial differencing that begins with the cell averaging of €
of the continuous equations on an underlying uniform grid. The divergence operator
becomes a surface integral operator,

V-F=

1 ]{F-ds
AXAy

For the remainder of this section the dependent variables will represent cell averages
the usual differential notation for the divergence operator (with the above interpretatiot
retained for convenience.

Assume that we have known values for all quantities at tifhand that we wish to
integrate (2.5)—(2.11) to a new tim&"! =t" + At. The integration is split into five main
steps:

1. Apply a second-order Godunov method to integrate the ion equations using lac
(i.e., evaluated at tim€') sources.

2. Use a second-order Godunov method to predict time-centered electron densiti
cell edges, based on the lagged electron drift velocity and diffusive flux. Implicitly sol
the electron continuity equation for a prediction of the cell-centered electron density at
t"*! and use it to compute an updated diffusive flux.

3. Solve a modified Poisson equation for the potential at the newtfifte Use the
resulting new electric field to update the electron density and flux.

4. Using the new electric field, electron density, and electron flux, combine a secc
order Godunov advection with an implicit treatment of the diffusive terms to integrate
electron internal energy equation.

5. Use the new time data computed in the preceding steps to compute more accura
source terms and update the ion density and fluxes attfifte

We describe each of these five steps in detail in Subsections 3.2.1 through 3.2.5, respec
The selection of the timesteft is described in Section 3.4.

3.2.1. Step 1 (lon equation integration)To perform the ion integration, we notice that
the system of Egs. (2.1)—(2.4) for each ion species can be written as a single vector eqt

CI I 3
aﬁﬁjMD+@QWZHN£L (3.46)

where we have the definitions:
n;
Iy

r, , I'x=nilix, T'y=nuiy, (3.47)

%Ui - Uj —i-Si/mi
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KT + KT,
2= it Kle (3.48)
m;
Ty ry
1;]—; + Czni F;IFy
FU) = . GU) = : ,
Iy r
N Ao
(3Ui - Ui + &/mi +¢2)Ty (3Ui-ui +&/m +c2)ry
(3.49)
S
1 KTeG% + aimi Ex + Six
HU.E)= — . , (3.50)
m; KTey y T ain Ey+ Sy
V. (nikTeUi) +aniu-E+ S

whereS), S, andS denote the collisional and gain/loss terms in the right-hand sides
(2.1)—(2.3). As described in Section 3.1, the above system is modified for electroneg
plasmas as

2= (vikT + BkTe)/m;, if g >0, (3.51)
kTi/mi, |fqi<0,
S
1 lngean' +qgin Ex + Six .
HU,E)=— s , ifg >0, (3.52)
m ﬂkTe n. +agniEy+ Sy
V. (ni.BkTeUi) +gnu -E+ S
or
S
ini Ex +
H(U,E)Ei QB+ Six , ifg <O, (3.53)
mi | gniEy+ Sy
gnui -E+ S

whereg is defined by (3.18). We use a second-order, unsplit Godunov method [3] to st
this system.

THE GODUNOV PROCEDURE  To cell average (3.46) we apply to each term

X|+1/2 VJ+1/2
dt / /
Xi—1/2 —172

tn+1
/ (3.54)
AtAxAy o

The first term in (3.46) becomes

Ut - ol
At



METHOD FOR PLASMA FLUID EQUATIONS 179

Time
t n+l
left | right left |right
n+1/2 n+1/2 n+1/2 n+1/2
i-172 i-12 i+1/2 12
¢ / \/ \ Space
X X X

i-1 i i+l

FIG. 1. Calculation of left and right states for Riemann problems for edges normal fodinection. Arrows
indicate position for state predictions relative to base of Taylor expansion.

whereU"; is a vector quantity representing the average value inicejl) at timet", of the
pointwise vector quantity.

The second and third terms represent time-averaged flux values through cell faces v
atimestep. These flux values are obtained by evaluating the flux fun€&idhsandGU)
using the solution of local Riemann problems at the cell interfaces (as in [10]). The st
used to calculate the Riemann solution are detailed below, but it is important to point
that, rather than using cell-centered values from the previous timestep for these state
use Taylor series expansions in time and space about the cell-centered values for t
accuracy. These edge state values are depicted in Fig. 1 for the case of edges normal ti
direction. Using these states increases the spatial and temporal accuracy to second-or
least in the case of linear advection). If we represent these Riemann squtiﬁhglpyj
andUp,; ., ,, the second and third terms can be written as

1 ~ ~
E[F( M12i) — F(ULy2)]s

Aiy [G(07112) = 607 112)]-

The discrete source term is calculated in two steps. First, the values of the state vari
att" are used to calculate a provisional updz:iﬁi#‘+1 at timet"*. The update is recalcu-
lated using this value for the source temr(Ui’fj”“, E™1). In this way, a more accurate
description of the source evolution during the step is obtained. This gives for the fol
term
[H (U7 E") + H (U7 E)).

ij

NIl =

Rearranging gives the update scheme for the cell averages,

At ~ ~ At ~ ~
Uir,]jJrl = Uiljj - H [F(UinJrl/Z,j) - F( iILl/z,j)] - A_y [G(Uin.Hl/Z) - G(Uin,jfl/Z)]
+ % [H(UY. E") + H (U, EMY. (3.55)

THE RIEMANN SOLVER. Central to the Godunov algorithm is the solution of Rieman
problems at cell edges. Because the system of equations describing each ion spe«
essentially the Euler equations of ordinary gas dynamics with a modified sound speed
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to the rearrangement (3.13)) and source terms, approximate Riemann problem solu
can be obtained in the same manner as for a neutral gas [10].

The Riemann solver returns a solution at a cell edge, given the states on both sides
solver decomposes the jump into wave components and determines from the wave s
the solution at the interface during the timestep. This Riemann solution is then use
evaluate the flux functions andG in (3.46). The solver is locally one-dimensional in tha
the transverse behavior is included only as a source term in the calculation of the left
right states. The term unsplit is in contrast to methods using Strang splitting [14]. Ra
than alternating between directions on subsequent steps, as in a split method, eact
(normal tox or y) is treated independently and on an equal footing during each step.

HALF-STEPPREDICTIONS.  Inorder to calculate the edge fluxes, a Riemann problem m
be solved at each cell edge. If lagged cell-centered data is used as input to the Riel
solver, the method is first order (in the case of linear advection). Higher order interpola
in space alone can be used. However, this requires twice as many Riemann solve
comparable accuracy [10].

The approach we have chosen is to Taylor-expand in space and time about the
centered value af to get a better approximation to the edge staté¢&'at?. This allows the
Riemann solves to be done, operationally, as in the first-order case, but with second-
accuracy (this can be shown analytically for the case of linear advection and computatiol
for Burgers’ equation). The difference is that we are using more accurate (spatially
temporally) values for the left and right states in the Riemann solve.

So, the leftand right state values for the edge-bordering@eli$and(i + 1, j), depicted
in Fig. 1, and the bottom and top states for the edge borderingicellsand(, j + 1) willbe

At3U|"  AxaU|"
UTTE D =ul+ 5| +5 .
i11/2.] U2, T2
s R At U |" Ax U |"
Ui”:l/z_j =Ul+ - o T2 ax '
2 0t [ 2 X iy
, : (3.56)
U2 (B gn Ata3U " Ayau|"
Litiz2] = Ui A~ e 5 av ’
ij+1/ M2 et 2 ay
AtaU|" Ayau |"
U-nj’—l/2 T u" 5 Tar T o gy ’
Li+1/2 NI 2 0tfij1 2 0yl

The time derivatives are then replaced with spatial derivatives using the conservatior
(3.46) in quasi-linear form to obtain

n n n
n+1/2 |\L _ in AX oU At At At
Uasl =Yt g &R, T2, 2 L
ni1/2 (R AX 90U At A At | At "
Vazil = Ui = S [ T AT T 2, T2 My
i+1,]j i+1,j i+1,j
Ay U At oAt " At " (3:57)
Utz P =un + 2 - || - =F ZH|
I,j+l/2| |]+ 2 3y Ay . 2 xi.j 2 .
Ay dU At n At _ " At "
umz T —yn ———[|+—ae} - =F +—H|
i,j+1/2 i,j+1 2 By Ay i 2 Xi$j+1 2 i

wheredF anddG are the Jacobians of the flux functioRsandG, respectively.
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SLOPE LIMITING AND CHARACTERISTIC PROJECTION We further modify the state pre-
dictions (3.57) to enhance stability. We first want to use slope limiting to prevent oscillati
that could feed into nonlinear instabilities. Second, we wish to take advantage of local c
acteristic information and remove portions of the Taylor series expansion that do not c
from the “upwind” direction. The first of these objectives is accomplished through 1
use of the van Leer slope-limiting operator, dend®d The upwinding is done with two
projection operator®, andP_ as described in [5].

Including the slope limiting and characteristic projection operators, we have our fi
representation of the left/right and top/bottom state values used for the Riemann solu

AX U At AN N AN S
UMYZ = U + 5P s 5= ) |1 = = aF -G —H| |
1+1/2.] R ax AX o2 7 2l
Uizl = in+1,i_7P—{SL<§ I+BaF L)
At " At "
2 i+1,] 2 i+1,j
(3.58)
Ay au At oAt " oAt "
UM B=U-“-+—P+{SL(—){|——36” — TR 4+ =H|
Lz M2 ay Ay g2 ko2 g
Ay au At n
umy2 T —gn - —P{SL(—) {l + —ae]}
i,j+1/2 i,j+1 2 8y Ay i1
At " N AtH n
2 " ij+1 2 i,j+1

Two-PAss FLux CALCULATION. To calculate the state predictions (3.58), the cel
centered transverse fluxes must be known. For example, the prediction of the left
requiresGy|';. To approximate these transverse flux terms, a two-pass scheme is use
the first pass, the transverse flux terms are approximated by considering a set of hor
neous equations. We calculate the fluxes associated with the conservation laws,

ou d

— + —F(@WU) =0,
ot +8x )

ouU 0

— 4+ —GU) =0.
ot +ay )

We will then be able to approxima@®,|{'; andF|{'; as

1 . N
Full' =~ R(F(Uir]+l/2,j) —F(Uly2))

1 ~
Gyl'j ~ A—y(G(Ui",m/z) —G(UDj_112))-

With these transverse values, we can then calculate the state predictionsin (3.58) inas
pass.
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3.2.2. Step 2 (Electron diffusive flux calculation)o begin the electron advance, we
substitute (2.6) into (2.5) to obtain

an _
a—te ==V (Nelle) + V- 1V(NekTe) + > Rej. (3.59)

j
wherele = — 1 E is the electron drift velocity. We calculate a slope-limited, Taylor-serie
prediction of the edge electron densityY/? at t"+%/2 = (t" 4 t"+1) /2 upwinded relative
to the lagged drift velocity?. Specifically, on cell edges parallel to theaxis,

At ang N Ax 9ne |N TR )
/2 Nelij + 2 5l + 2 ax i for teliayzy > 0 (3.60)
eli+1/2,j — n|n _+g%n _ Axong|n fOfLT|-n <0 )
eli+1,j 2 9t li+1,j 2 ax li+1j eli+1/2,j =

and similarly for the cell edges parallel to tkeaxis. As for the ion equations, the tempora
derivatives in (3.60) are replaced using the quasi-linear form of (3.59) and the sp:
derivativedng/dx, which is slope limited.

Using the half-step prediction]*%/2 in the electron drift flux term, we then discretize
(3.59) as

ﬁn-‘rl —_nn 1o i1
Far =V ) AT L3 OR ey

Collecting terms involvindif*! on the left-hand side yields a symmetric, positive definit
linear system that can be solved for this quantity. The defity is merely a prediction
of the electron density at tinté** that we employ to compute the electron diffusive flux

TgEt = —n"V(ATKTY). (3.62)

3.2.3. Step 3 (Coupled potential and electron integratiot)sing the electron diffusive
flux IJ#* and the electron densitieg*'/?, we are ready to advance the potential an
compute the final electron density at tirtfié2. As shown at the end of Section 3.1, the
electron drift flux represents a stiff term that must be treated implicitly. As in (3.43), \
difference (2.11) in time to obtain

€0 v2¢r‘l+l _ V2¢n nn+l _ nn g n If'l+1 _ nn
=0 3.63
e At Z ( )

then we use the continuity equation to replace the first term on the right-hand side by

n2+1 —Ng +1
n n
=Vt > R, (3.64)
j
where
M = pitl2gpntl 4 el (3.65)

Using the discrete ion continuity equations in the second term on the right-hand sid
(3.63), collecting allterms involving™** on the left-hand side, and using Poisson’s equatic
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at the old time, we obtain

) |
v. [(§+M”Atng+1/2> V¢”+l] —n— q—e'n FALY- ( (l(niui)”“/z—ré‘i#l)
i i

(3.66)

Here, we have also used the fact that the gain/loss tRInpsR|; yield zero net charge, i.e.,
> (qeRQJ- +3 g Fﬁﬂ) =0. (3.67)
j i
Equation (3.66), together with boundary conditions, is a symmetric linear system that

be solved fop"*. The final electron flux is then computed from (3.68)}* is obtained
from (3.64), and the new field is given by

EM! = —vehtl. (3.68)

3.2.4. Step 4 (Electron internal energy equation integration)e discretize (2.7) as

ST Ty < gr2+1kTen+1/z>

2 At

= —ergtt- EM 4 gV - ("I 2K T2 KT

3m
+Pha— ) kTS Q,ne+Zee,SQJ, (3.69)

i

whereT"/2 is a slope-limited, Taylor-series prediction of the edge temperatufe it
upwinded relative to the velocityg (similarly to (3.60)). Collecting all terms involving
T on the left-hand side, we obtain, together with boundary conditions, a symme
positive definite linear system that can be solved for this quantity.

3.2.5. Step 5 (lon data update)At this point, all that remains is the final update of the
ion data. To do this, we must evaluate the source tdrid, E) in Eq. (3.46). At the start
of the timestep we have the data

n
n;
n'up,

Uu=un E=E" (3.70)

niufl

sut-ud + &M /m

At the end of Step 3, we have provisional values for the ion data and final values for
field

ﬁn+1

Aot
E=E"! (3.71)

an+lan+1 ’ - ' '

i uly

1A+l An+l N+l /mm
507 - Of + & /m;

n;
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We then average the source term evaluated with these two states. This is much like H:
method [6] and is second-order accurate in time. With this source term we can calculat
new solution of the conservation law (3.46),

At - - N -
uret = Ut = ZFORY) - RO - ) [6(07) - 6(05™)
+ %[H(U”, E" + HU™ EMY, (3.72)

where U2, Y2 302 and G52 are Riemann solutions used to evaluate th

time-centered fluxes on the right, left, top, and bottom cell edges, respectively.

3.3. Boundary Conditions

Boundary conditions for the discrete ion equations are applied in the solution of
Riemann problems at boundary cell edges. The Riemann problem solutions give the
linear equivalent of upwind solutions that are used to evaluate the flux fundtiamsl G
in (3.46). On each interior cell edge, predictions made from both sides of the edge de
the initial conditions for the Riemann problem. At cell edges on the problem boundary,
assume that for positive ion species the prediction coming from the interior of the don
is the solution to the Riemann problem. This is equivalent to assuming that the ions
flowing outward at a speed greater than the ion acoustic spdefined by (3.48), which
is consistent with the well-known Bohm sheath criterion [2]. For positive ion species
an electronegative system, the use of interior predictions at the boundary is also cons|
with modified Bohm criterion as described in [11] due to our inclusion of the fagtor
given by (3.18) in the definition of the reduced plasma sound speed used for the hyper
integration. For negative ion species, we assume a zero flux boundary condition.

For Poisson’s equation, Dirichlet boundary conditions are imposed on the potgnti
corresponding to an applied voltagg at the boundary. The applied voltagg can vary
spatially along the boundary and with each time step. In the simulation of ICP reactors
example, radio-frequency (rf) biasing can be included by specifying a sinusoidally vary
potential along a portion of the boundary.

The specification of boundary conditions for the discrete electron equations requir
boundary condition for the electron flungu.. Consider a spatial cell with an edge on the
problem boundary. Lefy, denote the outward normal componeningii. at the center of
the boundary edge, and kg denote the applied voltage there. ke, andT, denote the
potential, electron number density, and electron temperature at the cell center, respect
Of all the electrons at the cell center, only those moving toward the boundary with kin
energies greater thag¢, — ¢| can overcome the potential barrier. Using a Maxwellia
distribution

1/2 2
Me —Mew
f(w) = <2nkTe> exp( Ko ) (3.73)
we therefore propose that

Iy = Newe(kTe, @), (3.74)
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wherews is the average velocity of electrons reaching the boundary; i.e.,

o0

we(kTe, @) = / wf(w)dw

(2elpp—p|/me)¥/2
KT eldp —
" oxpf S0 —91
27T me KTe

kT elgp — 9|
TR (-5

(3.75)

wherev(kTe) = /8K Te/mme is the average speed for a Maxwellian distribution. hiEt!/?
again denote the Taylor-series-predicted density at the boundary. We can then requir
at the problem boundary

IHY200H — ' (ATTKTY) = DY 200 (KTY, ™). (3.76)

This relation for the total flux at the boundary does not give the drift and diffusive fl
components separately. Moreover, it depends upon the potential, which we are tre
implicitly. This requires a modification of (3.66) to include the total electron flux, not ju
the drift component, on the left-hand side. Specifically, we replace (3.66) by

2 %’qu““ + AtF(¢“+1)] =ng-Y %n? + AtV . (Z %(ni up)" 2 — rg#),
i i

(3.77)

where

ni+1/2,nypntl on interior cell edges, (3.78)
ni™/2we (KT, ¢"™) on boundary cell edges. '

F(p"™) = {

Here, we assume theft{;i#:O on boundary cell edges, which also implies the use
homogeneous Neumann boundary conditions in the solution of the linear system in (3
Since the exponential nonlinearity introduced by the electron flux boundary condition (3
in (3.77) affects only boundary edges, (3.77) is readily solved using Newton iteration \
a symmetric Jacobian.

The solution of the linear system implied by (3.69) requires a boundary condition for
total energy flux,Qp. The total energy is calculated by arguments similar to those usec
obtaining (3.74). A derivation for the total energy flux is shown in [11] and is given by

5 5n

Qp = EnekTeue — ?nekTerTe = 2k Telp. (3.79)

Although we have specified boundary conditions independently for the ion species
electrons, a coupling of boundary fluxes will occur if secondary electron emission is
cluded. In our time-split integration algorithm, after each of the ion species has been
vanced over the timestep, the inward flux of emitted electrons can be computed as a
of terms, each of which is the product of ion flux (for the outward flowing species) tirr
an emission coefficient depending on the ion species and boundary material. The emi
flux computed in this way can then be subtracted from (3.74), which simply adds a cons
term to the nonlinear problem (3.77).
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As a final comment in this section, we note that the use of the electron flux bounc
condition (3.74) is, in effect, a type of sheath model since it attempts to incorporate
potential drop across the sheath even if the sheath is entirely contained in the boundan
If, on the other hand, the sheath is resolved by the grid, the predicted boundary flux ten
the correct limitv(kTe) /4 as|¢ — ¢y| tends to zero in the exponential factor. This behavic
is critical when the Cartesian grid algorithm described in this paper is used as a refinel
level integrator in a locally refined grid algorithm as described in the Introduction.
particular, it is important to at least have a reasonable prediction of the electron flux du
the integration of the coarser, under-resolved levels so that a smaller correction is req
from the fine grid integration.

3.4. Timestep Restrictions

The implicit treatment of the electron drift flux in (3.77) allows us to exceed the ve
restrictive dielectric relaxation timestep limit. The dielectric relaxation time is

2
Tdielectric = Ven/a)p,

whereve, is the electron neutral collision frequency amnglis the plasma frequency. For
parameters such as in Table thelecric can be as small as 18 s. The explicit nature of
the electron advection in our time splitting limits us to conditional stability, however. It w
our expectation that we would be limited by the Courant condition, based on the elec
drift velocity, i.e.,

. AX Ay >
At <min| ——, —— |. 3.80
- (M|Ex| M|Ey| ( )

Experience with our code and a linearized stability analysis [17] have confirmed this ex|
tation. This same analysis suggests ways in which larger timesteps may be used, but
detriment of spatial accuracy. As will be shown in an example in the following section,
timestep restriction (3.80) is typically more severe than the corresponding Courant lir
for the integration of the ion species, and it is therefore the primary control in times
selection. The inclusion of rf-biasing at the problem-boundary can further restrict the -
of timesteps in order to resolve the resulting variations.

4. RESULTS

In this section, we present some numerical results obtained using an implementatic
the algorithm described above.

4.1. Convergence Studies

To investigate the convergence of the numerical algorithm described in Section 3, we
formed a series of calculations with varying spatial grid sizes. An atomic hydrogen pla:
was assumed with a constant ion and neutral temperature of 0.05 ev and neutral nu
density of 16* m=2. The ion-neutral collision cross section wags = 5.0 x 107° cn?,
and the corresponding frequency was computed using (3.21). The ionization and ele
elastic collision cross sections were obtained from analytic fits to atomic physics data |
which resulted in the corresponding frequencies plotted in Fig. 2. The ionization ene
loss coefficient wagej = 13.565 ev.
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FIG. 3. Potential profiles (volts).

We assumed a one-dimensional spatial domain 8 cm in length with a grounded we
the left boundary and a symmetry boundary at the right endpoint. Steady-state solu
were calculated using 8, 16, 32, 64, and 128 cells. The resulting potential, electron
sity, electron temperature, ion density, and ion flux are displayed in Figs. 3 througl
respectively. Further refinements were prohibitively expensive, as is discussed in the
section. The inability to refine further makes it difficult to determine the order of the ¢
lution convergence, since we are not yet in the asymptotic regime where the higher c
terms are negligible. We are, however, able to see that the solution is indeed conver
The plots suggest that the convergence is at least superlinear and we expect thatitis s
order.

4.2. Computational Complexity

Although the implicit treatment of the electron drift flux in (3.66) avoids the dielectr
relaxation timestep restriction, we are still left with a computationally intensive proble
since many steps are required to integrate the solution to times of interest. In this sectic
examine the relevant time scales for a sample problem in order to better understand
we have accomplished and the limitations of our approach.

Figures 8 and 9 show results for a sample calculation at steady state. Here, an «
plasma is assumed with a constant ion and neutral temperature of 0.05 ev and a n
density of 16' m~3. The ion-neutral collision cross sectiondg = 5.0 x 10~° cn?, and
the ionization and electron elastic collision data is obtained from [7]. The spatial dom
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FIG. 8. Potential profile for sample calculation.

is an 8-cm square that is grounded along two adjacent sides with symmetry boun
conditions applied to the other two sides. A%44 spatial grid is imposed.

The timestep restriction (3.80) for the algorithm described in Section 3 is determinec
the mesh size and the peak electron drift velocity. The limit for a purely explicit treatm
would be the dielectric relaxation timestep limit (which is grid independent). Regardl
of the method used to integrate the electrons and potential, we are still bound by
Courant condition determined by the ion velocity if we use an explicit method for the |
advection. Therefore, the Courant limit imposed by the ion velocity can be viewed as
theoretical limit for large timestep selection. In Table 11l we have tabulated these limit
timesteps at steady state for this sample problem. The values for the “quasineutral”
were determined at the center of the spatial domain, and the “sheath” data was extr
from a cell along the physical boundary. In order to emphasize the difference in time
selection for a steady state solution, we have also tabulated the number of timesteps ret

TABLE 11l
Comparison of Computational Complexity for Different Limiting Timesteps

Timestep Number of steps
Factor limiting timestep (seconds) to steady state
lon Courant condition (quasineutral region) 4.89e-6 102
lon Courant condition (sheath region) 1.77e-7 2,82¢
Electron drift velocity Courant condition (quasineutral region) 1.64e-8 30,48
Electron drift velocity Courant condition (sheath region) 2.03e-10 2,463,0¢5

Dielectric relaxation time 2.50e-15 200,000,000,000
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FIG. 9. Electron density profile for sample calculation.

to integrate the plasma system to 5@6. This shows that, despite the removal of thi
dielectric relaxation timestep limit, the electron drift timestep limit remains and makes
calculation of steady state solutions difficult. We are currently working toward removing t
limit as well, and our goal is to push the timestep stability limit to that required for the i
advection.

Stability is not the only issue, of course. Typical ICP reactors utilize a 13.56 MHz ra
frequency (rf) bias potential on the wafer surface, in order to independently control
density and energy flux. Timesteps much smaller than the rf period must be used in c
to accurately resolve the bias effects [16]. In this case, the ion limiting timestep may
too large because of insufficient temporal accuracy. Even in this case, however, the ele
drift-limiting timestep is smaller than necessary from an accuracy point of view. It is a
possible that transient behavior may be of interest, although we have not explored
issue.

5. CONCLUSION

We have presented a new numerical method for the solution of a set of plasma
equations similar to those used in modeling semiconductor fabrication processes. In ad(
to a careful temporal splitting of the full fluid system, higher-order spatial discretizatic
were applied in an effort to reduce the amount of spatial gridding relative to lower or
discretizations. The results of Section 4 clearly demonstrate the need for a more aggre
gridding strategy near the sheath boundary layer. As mentioned in the Introduction,
Cartesian grid algorithm presented here can be used as a refinement level integrato
locally refined grid algorithm [4].



METHOD FOR PLASMA FLUID EQUATIONS 193

ACKNOWLEDGMENTS

We thank Peter Vitello at Lawrence Livermore National Laboratory (LLNL) for his many helpful discussic

regarding plasma modeling. We also acknowledge the assistance of Xabier Garaizar, also at LLNL, in the fc

lati

on of the modified Euler equations. Finally, we thank the reviewers for suggesting several important addi

to the manuscript.

REFERENCES

1. M.S.Barnes, T.J. Colter, and E. Elta, Large-signal time-domain modeling of low-pressure RF glow discha

J. Appl. Phys61, 81 (1987).

2. F. F. Chenlintroduction to Plasma Physics and Controlled Fus{@enum, New York, 1984).

w

. P. Colella, Multidimensional upwind methods for hyperbolic conservation lawSpmput. Phys37, 171

(1990).

. P.Colella, M. R. Dorr, and D. D. WakBumerical Solution of Plasma Fluid Equations Using Locally Refine

Grids, Technical Report UCRL-JC-129913, Lawrence Livermore National Laboratory, Livermore, Califorr
March 1998. ). Comput. Physsubmitted]

. P.Colellaand E. G. Pucketodern Numerical Methods for Fluid Flo@ambridge Univ. Press, Cambridge),
in preparation.

6. G. Dahlquist and A. Bjorck\umerical Methodg¢Prentice-Hall, Englewood Cliffs, NJ, 1974).
7. L. R. Peterson and J. E. Allen, Jr., Argon elastic scattering and ionizationJa@sem. Phy$56(12), 6068

(1972).

8. V. E. Golant, A. P. Zhilinsky, and I. E. Sakharéwyndamentals of Plasma Physigiley, New York, 1980).
9. S. Hashiguchi, Implicit difference scheme to calculate electric fidlmsan. J. Appl. Phys32(1A/B, 15),

10.
11.

12.
13.

14.
15.
16.
17.

L138 (1993).
R. J. LeVequeNumerical Methods for Conservation Lag&rkhauser, Basel, 1992).

M. A. Lieberman and A. J. Lichtenbergrinciples of Plasma Discharges and Materials Procesgiijey,
New York, 1994).

D. M. Manos and D. L. FlamniRlasma Etching: An Introductio(Academic Press, San Diego, 1989).

R. A. Stewart, P. Vitello, and D. B. Graves, Two-dimensional fluid model of high density inductively coup
plasma sourced, Vacuum Sci. Technol. B (1994).

G. Strang, On the construction and comparison of difference sch8ikég,J. Numer. Anab, 506 (1968).
N. Tishchenko, personal communication.
P. Vitello, personal communication.

D. D. Wake,Simulation of Plasma Based Semiconductor Manufacturing Using Block Structured Loc:
Refined GridsPh.D. thesis, University of California, Davis, 1998.



	1. INTRODUCTION
	2. PLASMA FLUID MODEL
	TABLE I

	3. NUMERICAL ALGORITHM
	TABLE II
	FIG. 1.

	4. RESULTS
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	TABLE III
	FIG. 9.

	5. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

